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NEUTRON DIFFRACTION MEASUREMENTS

Neutron diffraction experiments were carried out on a
∼0.4 g powder sample using the HB1, HB-1A, and HB-
3A neutron spectrometers located at the High Flux Iso-
tope Reactor (HFIR) at Oak Ridge National Laboratory.

The HB-1A spectrometer operates with a fixed inci-
dent energy of Ei=14.64 meV using a double pyrolitic
graphite (PG) monochromator system. Two PG filters
were placed before and after the second monochroma-
tor to reduce higher order contamination in the incident
beam (Iλ/2 ≈10−4 Iλ). The powder sample (in a 6 mm
diameter aluminum sample can) was loaded in a top-
loading closed-cycle refrigerator (CCR) and diffraction
patterns over a 2θ angle range of 10o < 2θ <90o were
collected at 40 K, 300 K and 590 K. The order parame-
ter measurements were performed by scanning the peaks
of interest at selected temperatures between 40 K and
600 K.

The same powder sample was also measured at HB-
3A four-circle diffractometer in a wider Q-range for more
magnetic reflections. A 2-dimensional Anger camera type
detector was used for the powder measurement. A neu-
tron wavelength of 1.542 Å was used from a bent perfect
Si-220 monochromator.

Polarized neutron measurements were performed on
the same sample using HB1 polarized triple-axis spec-
trometry, with a fixed final energy of Ef = 13.5 meV
and a collimation of 40’-80’-sample-80’-120’. The neu-
tron beam is polarized by using Heussler alloy monochro-
mator and analyzer with a spin flipper in the incident
beam. The sample can be maintained in a horizontal or
vertical magnetic guide field such that the neutron polar-
ization P0 is parallel or perpendicular to the momentum
transfer Q; P0‖Q when a horizontal field is applied at the
sample position or P0⊥Q when a vertical magnetic field
is applied. With the spin flipper off or on, we measure
the (++) non-spin-flip or the (-+) spin-flip scattering, re-

spectively. The HB1 experiment was performed with P0

‖ Q at room temperature. Both (1 0 0.5) magnetic peak
and (1 0 1) nuclear peak were measured with ”Flipper
Off” and ”Flipper On” configurations with a horizontal
magnetic guide field at the sample position.

Coherent nuclear scattering is always (++) non-spin-
flip scattering because it never causes a reversal or spin
flip of the neutron spin direction upon scattering. On
the other hand, magnetic scattering depends on the rel-
ative orientation of the neutron polarization P0 and the
scattering vector Q. Only those spin components which
are perpendicular to the scattering vector are effective.
Thus for a fully polarized neutron beam with the hori-
zontal field configuration, P0 ‖ Q, all magnetic scatter-
ing is (−+) spin-flip scattering, and ideally no (++) non-
spin-flip scattering will be observed. The strong intensity
shown in Fig. 2(c) was observed in the (++) channel as
expected for the nuclear (1 0 1) peak. The strong scat-
tering detected in the (−+) spin-flip channel confirmed
the magnetic origin of the (1 0 0.5) peak.

REFINEMENT OF DIFFRACTION PATTERNS

The crystal and magnetic structure were analyzed by
the FullProf software package. Figure 1 shows the refine-
ment of the room temperature diffraction pattern taken
at HB-3A with powder in an aluminum can. The R-
factors for the nuclear and magnetic Bragg peaks are
0.037 and 0.082, respectively. The global goodness of
fit is 4.17. The refinement gives the room temperature
lattice parameters of a=5.1988(9)Å, and c=5.2270(13) Å,
consistent with the previous report.

ELECTRICAL RESISTIVITY

The temperature dependence of electrical resistivity
was measured in the temperature range 150 K≤T≤360 K
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FIG. 1: (color online) Refinement of the room temperature
neutron diffraction pattern taken at HB-3A. The upper and
lower vertical bars show the position of nuclear and magnetic
reflections, respectively. The 2θ regions with alumina can and
half-lambda contaminations were excluded in the refinement.

on a cold-pressed pellet. The electrical resistivity in-
creases upon cooling and we tried fitting to an activated
model: ρ(T)∝ρ0+exp(-∆/2kT), where ρ0 is a constant,
∆ is the band gap. The fitting gives ∆ = 36 meV.

It is worth mentioning that the electrical resistivity was
measured on a cold-pressed pellet without high temper-
ature treatment. Measuring the electrical resistivity is
rather challenging because (1) the SrRu2O6 powder syn-
thesized by hydrothermal technique contains small crys-
tallites with the largest dimension around 50µm. With
the regular die/press, we cannot press the fine crystallites
into a dense pellet even after grinding for an extended
period. With the help of a pair of WC anvils, we have
now managed to make a dense pellet that has allowed
us to perform resistivity measurements. (2) SrRu2O6 de-
composes around 800 K. Thus, no high temperature heat
treatment of the cold-pressed pellet can be performed to
relieve the residual stress. As a result, we expect grain
boundaries and residual stress would prevent an accu-
rate measurement of the intrinsic resistivity of SrRu2O6.
Future work on single crystals is desired.

DFT CALCULATIONS

The muffin-tin radii r for Sr, Ru and O were set to
2.36, 1.93, and 1.72 a.u., respectively. We used the maxi-
mum modulus for the reciprocal lattice vectors Kmax was
chosen so that rO × Kmax = 9.0. In the calculation of
the partially screened Coulomb interaction, we took 120
unoccupied bands and used a 4× 4× 4 grid. The double
Fourier transform of the constrained susceptibility was
done with the cutoff of 5 (1/a.u.).

Fig. 3 presents the band dispersions for the NM and
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FIG. 2: Temperature dependence of electrical resistivity mea-
sured on a cold-pressed SrRu2O6 pellet. The right panel
shows the data plotted as lnρ vs 1/T.

FIG. 3: Band dispersion for the (a) NM and (b) G-type AF
phases using a doubled unit cell.

G-type AF phases using a doubled unit cell. Please note
that the number of bands is doubled from that for the
NM band dispersion using a primitive cell presented in
the main text. The band dispersions of the NM and AF
phases are very similar, except that the AF order enlarges
the band gap from 0.05 eV to 0.14 eV. Density of states
(DOS) projected on Ru sites polarized with up spin is
shown in Fig. 4. Oxygen bands below -2 eV show almost
no spin polarization, which validates our strategy to con-
centrate on the t2g bands lying around the Fermi level.
DOS projected on O sites is not shown here because spin
polarization for up and down spins are exactly canceled
in the AF phase.

EFFECTIVE PARAMETERS AFTER
DOWNFOLDING

Starting with the DFT calculation for the NM state,
we first construct the Wannier functions and calculate
the transfer integrals between them. Next, we evaluate
the interaction parameters, the Coulomb repulsion U(r)
and the exchange coupling J(r) by the constrained RPA.
For simplicity, we neglect the spin-orbit interaction since
it is irrelevant in the following analysis. The Coulomb
parameters from constrained RPA and transfer integrals
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FIG. 4: Density of states (DOS) for the G-type AF phase.
Total DOS for each spin and projected DOS (PDOS) for d
states on Ru sites polarized with up spin (denoted Ru1 sites
here) are shown.

after applying the downfolding procedure are given be-
low. The first three basis states correspond to effective
orbitals centered on the first Ru site in the unit cell, and
the second three correspond to those centered on the sec-
ond site. All values are reported in eV.

Hubbard interaction
2.732 2.186 2.167 1.133 1.150 1.186

2.680 2.185 1.149 1.156 1.163
2.731 1.185 1.163 1.162

2.731 2.185 2.167
2.680 2.186

2.732



Direct exchange interaction
0 0.280 0.282 0.010 0.016 0.029

0 0.280 0.016 0.020 0.016
0 0.029 0.016 0.013

0 0.280 0.282
0 0.280

0



Transfer integrals
5.552 0 0 0.130 0.049 0.279

5.386 0 0.049 0.222 0.028
5.552 0.279 0.028 −0.193

5.552 0 0
5.386 0

5.552



FINITE SIZE SCALING
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FIG. 5: (color online) Finite size scaling has been performed
for J⊥/J‖ = 0.03. The reduced temperature is denoted t =
(T − TN )/TN .

The transition temperature in a system of infinite size
is signaled by a divergence of the correlation length ξ, a
divergence of the susceptibility χ, and a sharp change in
the behavior of the staggered magnetization M . These
sharp transitions are rounded off in finite systems, and
the transition temperature must therefore be determined
using finite size scaling methods. Near the transition,
the divergence of the correlation length is cut off by the
finite size of the system, L, hence the staggered magne-
tization M, for example, now scales with L according to
M(t, L) ∼ tβF(L/ξ), where F(x) is a universal scaling
function, β is a critical exponent and t = (T − TN )/TN
is the reduced temperature measured relative to the in-
finite system transition temperature TN . Using the def-
inition ξ ∼ t−ν , where ν is a critical exponent, the de-
pendence of staggered magnetization can be written as
M(t, L) ∼ L−β/νF̃(L1/νt) in terms of a new scaling func-
tion F̃(x). From this scaling relation, it is evident that
the staggered magnetization must be independent of the
system size at t = 0. Fig. 4(a) in the main text shows the
extraction of the transition temperature obtained from
the intersection of the magnetization curves at different
system sizes. Having determined TN , the scaling rela-
tion further suggests that if we plot the scaled staggered
magnetization Lβ/νM(t, L) against a scaled temperature
variable L1/νt, we can determine the exponents. In this
case, the critical exponents belong to the Heisenberg uni-
versality class with ν = 0.70 ± 0.01 and β = 0.69 ± 0.01
that are well known. Our data for the scaled staggered
magnetization curves lie on a universal curve as shown
in Fig. 5 of this supplement; we obtain the best fit for
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ν ∼ 0.7 and β ∼ 0.5, which is somewhat lower than ex-
pected because of crossovers in the intermediate coupling

regime.


